Weather and Aviation

- Full spectrum of weather applications situational awareness, short-term forecasting, data assimilation of atmospheric and cloud properties into NWP
- Aviation weather convective weather, volcanic ash/SO2 impact, turbulence, icing, and, NWP data assimilation
- Impact of aviation on environment climate role such as emissions and contrail development
- Highest impact in remote locations such as data void regions such as oceanic/mountainous/polar/oceanic regions (umbrellas all of above categories)

Goals and Objectives

- Observations to fill gaps in data sparse areas
- Enable early use of future operational satellite instrumentation
- Unique spectral, temporal, phenomenological, and spatial coverage
- High resolution research NASA satellite data can be used to independently develop, assess, and improve NWP, satellite decision support products, future operational GOES-R algorithms
- Synergy with other observations (Example: Convection FAA CoSPA and Turbulence - GTG), satellite products are not stand alone

Information Needs

 Winds/shear, cloud properties (icing), volcanic ash/SO2, turbulence, lightning, thermodynamic state, convective overshooting-top/initiation, visibility, low clouds/fog

Observations that Address Information Needs

Observation Types

 Space, airborne, in situ measurements required for data and data products to be integrated with other observations and forecast systems

Spatial, temporal, spectral requirements

- High vertical resolution
- High spectral resolution
- High spatial resolution
- Rapid temporal refresh

All requirements vary with observation parameter

Traceability to NASA Missions Over the Next Decade

Near-term:

- NPP/NPOESS broad applications/high relevance mulitispectral imager and hyperspectral sounding similar to MODIS and AIRS/AMSU capabilities --- KEY MISSION
- GPM broad applications/high relevance passive and active precipitation mapping with 3 hour coverage over globe --- KEY MISSION
- LDCM narrow applications/moderate relevance
- OCO narrow applications/moderate relevance, surface pressure <u>Tier 1</u>:
- CLARREO limited (indirect), primarily used for cross calibration
- SMAP indirect application through surface forcing in NWP initialization
- DESDyni limited, possibly derived winds in coastal areas, sea ice (NWP influence)
- ICESAT2 limited unless provides atmospheric profiles

Traceability to NASA Missions Over the Next Decade

Tier 2:

- ASCENDS limited unless atmospheric profiles are derived
- HYSpiri limited, volcanic ash (in testing)
- SWOT indirect through model initialization
- GEOCAPE direct applications to visibility, greater capability if it had thermal IR, aviation impacts on climate
- ACE broad applications/high relevance, vertical motion from Doppler radar, cloud microphysical and macrophysical properties (enhanced CloudSat/Calipso capabilities) --- KEY MISSION

Data Distribution and Use

Data policy issues

publically and freely available, no obstacles to having access to data

Archival, processing and distribution issue

 realtime (direct broadcast)/near-realtime data collection and distribution system to external users with data availability in user appropriate formats, reprocessing and long term archive of all data, product processing from real-time data stream as appropriate

<u>Timeliness of data products</u>

 Direct broadcast/readout capability for time critical observations strongly endorsed for relevance to weather and aviation decision support

Potential overlaps with other application areas

• Water resources, air quality, disasters, climate